

Note: Slides complement the discussion in class

Transitive Closure Information about reachability

Table of Contents

U1 Transitive Closure

. . .

• •

Information about reachability

4

. . .

Transitive Closure

Given a graph G, the transitive closure of G is the digraph G* such that:

- *G*^{*} has the same vertices as *G*.
- If G has a directed path from u to v (with u ≠ v), G* has a directed edge from u to v.

The transitive closure provides reachability information about a digraph.

Transitive Closure

Given a graph G, the transitive closure of G is the digraph G* such that:

- *G*^{*} has the same vertices as *G*.
- If G has a directed path from u to v (with u ≠ v), G* has a directed edge from u to v.

The transitive closure provides reachability information about a digraph.

Note: Some transitive closure definitions allow (u = v).

Transitive Closure Variations

- 1. **(Sedgewick and Wayne):** On the adjacency matrix, automatically add 1's down the diagonal because every vertex is reachable from itself (i.e., every vertex has a self-loop in the transitive closure).
- 2. **(Goodrich and Tamassia):** On the adjacency matrix, set the diagonal to all O's unless a self-loop exists in the original graph.
- 3. (Warshall): On the adjacency matrix, the transitive closure will have 1's in the diagonal if:
 - a. There is a self-loop in the original graph.
 - b. There is a cycle in the original graph containing that vertex

Floyd-Warshall Transitive Closure

algorithm Floyd-Warshall(*M*:adjacency matrix representing *G*(*V*,*E*))

```
R^{(-1)} \leftarrow M
    n \leftarrow |V|
    for k from 0 to n-1 do
        for i from 0 to n-1 do
            for j from 0 to n-1 do
                R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] or (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j])
            end for
        end for
    end for
    return R^{(n-1)}
end algorithm
```


Floyd-Warshall:

0:	2, 4
1:	0
2:	0, 1
3:	4
4:	1

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	-	-	-
2	1	1	-	-	-
3	-	-	-	-	1
4	-	1	-	-	-

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	-	-	-
2	1	1	-	-	-
3	-	-	-	-	1
4	-	1	-	-	-

R⁽⁰⁾

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	-	1	-	-	_

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	-	1	-	-	-

 $R^{(1)}$

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	-	1

	0	1	2	3	4
0	-	-	1	-	1
1	1	-	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	-	1

R⁽²⁾

	0	1	2	3	4
0	1	1	1	-	1
1	1	1	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	-	1

	0	1	2	3	4
0	1	1	1	-	1
1	1	1	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	-	1

R⁽³⁾

	0	1	2	3	4
0	1	1	1	-	1
1	1	1	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	_	1

	0	1	2	3	4
0	1	1	1	-	1
1	1	1	1	-	1
2	1	1	1	-	1
3	-	-	-	-	1
4	1	1	1	-	1

R⁽⁴⁾

	0	1	2	3	4
0	1	1	1	-	1
1	1	1	1	-	1
2	1	1	1	-	1
3	1	1	1	-	1
4	1	1	1	-	1

Floyd-Warshall Algorithm Discussion

Q: Assuming an adjacency matrix representation, what is the space requirement for the algorithm? **A:** $O(|V|^2)$

Q: What is the runtime of the algorithm? **A:** $O(|V|^3)$

Q: Assuming no self-loops in the original graph, what does a self-loop (a 1 in the diagonal of the matrix) in the transitive closure graph tell us? **A:** There is a cycle in the graph containing that vertex.

Q: What does it mean if the resulting matrix is all 1's? **A:** Every vertex is reachable from every other vertex.

Question

0	1	1	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Q: Is this matrix a possible transitive closure of a directed graph?

A: Not with Warshall's variation. If every vertex is reachable from every other vertex, then there should be 1's down the diagonal since every vertex is part of a cycle.

Question

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

Q: Is this matrix a possible transitive closure of a directed graph?

A: Yes (with Warshall's variation). If the original graph is 5 unconnected vertices, each with a self-loop.

We're Done

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik and illustrations by Stories